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Abstract: Effective classical representations of heterogeneous systems fail to have an effect on the 

overall response of components on the spatial scale of heterogeneity. This effect may be critical if the 

effective continuum subjects' scale differs from the material's microstructure scale and then leads to 

size-dependent effects and other deviations from conventional theories. This paper is concerned with 

the thermoelastic behavior of rotating nanoscale beams subjected to thermal loading under mechanical 

thermal loads based on the non-local strain gradient theory (NSGT). Also, a new mathematical model 

and governing equations were constructed within the framework of the extended thermoelastic theory 

with phase delay (DPL) and the Euler-Bernoulli beam theory. In contrast to many problems, it was 

taken into account that the thermal conductivity and specific heat of the material are variable and 

linearly dependent on temperature change. A specific operator has been entered to convert the 

nonlinear heat equation into a linear one. Using the Laplace transform method, the considered problem 

is solved and the expressions of the studied field variables are obtained. The numerical findings 

demonstrate that a variety of variables, such as temperature change, Coriolis force due to rotation, 

angular velocity, material properties, and nonlocal length scale parameters, have a significant influence 

on the mechanical and thermal waves. 

Keywords: Rotating nanobeams; thermoelasticity; nonlocal strain gradient theory; variable 

properties; DPL model 
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1. Introduction  

Nanotechnology is an expanding topic of research with numerous fields, for example, 

nanomedicine, nanofabrication, nanoelectronics, and nanomachines. These areas require novel devices, 

such as nano water harvesters, oscillators, load sensors, nano-scale mass sensors, field-emitting 

devices, biological tissues, and nano-electrical devices. Although the movement of nuclear energy and 

the forces working between them is usually successful, engineers rely on continuous theories that 

describe the influence of those phenomena in a far wider and intermediate sense in the case of the 

deformation of solids [1]. Even current digital computers need too much processing capacity to be 

used by the designer in comprehensive atomic simulations of engineering structures and components; 

the fundamental reason for these approximation theories is efficiency [2]. Continuous theories such as 

linear elasticity, plasticity, etc. give approximately a fraction of the cost of a simple nuclear simulation 

to approximate response engineers. 

Several bulk material theories, such as the local beam, shell, and plate, were used in classical 

continuum mechanics to study the mechanical nanostructure of large-scale systems. While many 

studies have been done using classical continuum mechanics, its use at the nanoscale is unclear. 

Because in conventional continuum mechanics, small-scale factors such as Van der Waals, surface 

influences, lattice distance, energy, and chemical bonds are ignored [3]. 

Experimental as well as atomic simulation results show that these small-scale effects cannot be 

ignored at the nanoscale [4]. As the lattice distance between the atoms becomes increasingly relevant 

on a small scale, the discrete structure (interior) of the material cannot be homogenized into a 

continuum anymore. Nonlocal continuum theories have been defined to treat small-scale effects. In 

continuum modeling, this incorporates a size-dependent parameter to reflect the modest effect [5]. The 

theory of strain gradient, stress theory, the theory of micropolar, and the nonlocal theory of elasticity 

are among the most popular non-local theories [6, 7]. 

Eringen's nonlocal elasticity theory is effective in dealing with phenomena that have fewer origins 

in systems than in traditional models of communication [8–10]. The internal size or scale in this theory 

may be described simply as material parameters in the constitutive equations. These nonlocal 

mechanics are widely recognized and used for many issues, including wavy diffusion, dislocation, 

problems with cracks, etc. It has recently been shown that the application of non-local continuum 

mechanics to the modeling and analysis of nanostructures is very interesting [11]. Furthermore, few 

studies have reached the same conclusions as the classical theory of nonlocal elasticity [12].  

Lim et al. [13] introduced the higher-order nonlocal strain gradient theory (NSGT) with two 

separate small-scale parameters in order to solve these problems with the nonlocal theory of elasticity. 

According to the NSGT, stress is the function of strain and a larger order strain gradient at every point 

in the domain. This theory takes into account both the interatomic forces and the deformation process 

of the higher-order microstructure. Subsequently, many studies using the NSGT theory have been 

carried out to examine the mechanical interaction of nanostructures [14]. The wave dispersion achieved 

by the NSGT theory is found to be extremely close to what was predicted by the dynamic molecular 

modeling of the nanopillars [15]. Liu et al. [16] evaluated the significant nanowire deformation 

behavior in terms of its surface influences (surface elasticity and residual surface stress). They 
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constructed the governing equation in combination with the residual surface stress and surface 

elasticity of nanowires with large displacements and different boundary conditions. Many researchers 

in many different applications [16–25] have used these modified models. The study of the dynamic 

behavior of rotating nanobeams is a growing research topic, due to its potential for application in 

various rotating NEMS such as nanomotors, nanoturbines, rotating nanomotors, etc. [26–41]. 

Generalized thermoelasticity theories have been developed to solve the infinite speed heat 

propagation problems predicted by the classical thermoelastic theory. By substituting a unique law of 

thermal conductivity for the standard Fourier law, Lord and Shulman [42] proposed one of the modified 

generalized thermoelasticity theories with one relaxation time. Recently, the Tzou model is one of the 

most recent models that has gained fame in the field of thermoelasticity [43–45]. In order to address the 

problems of the infinite speed of thermal waves, which are anticipated by conventional thermoelastic 

theory, several proposals have been offered in addition to the above-mentioned models [46–49]. 

Many studies focusing on the dynamics, bending, statics, and vibrational properties of nanobeams 

have been presented, with few studies focusing on the thermal elastic behavior of small-sized rotating 

beams with variable physical properties. In this paper, motivated by the need for improvement, the 

dynamic transverse vibration properties and thermal vibration analyzes of rotating nanobeams are 

studied based on the proposal of a new methodology based on nonlocal strain gradient theory (NSGT) 

that captures the small-scale effects. Also, the equations for the governing system were derived based 

on the Euler-Bernoulli theory and generalized thermoelasticity with two-phase lag (DPL). Contrary to 

many other concerns, the thermal conductivity and specific heat of the material have been considered 

variable and linearly dependent on changes in temperature.  

The proposed model is able to study rotating nanobeams under thermal loads and includes 

Coriolis effects caused by rotation. To the authors' knowledge, for the first time, a rotational model of 

a thermal nanobeam has been reported whose properties depend on the temperature change. This study 

will also contribute to a full understanding of the behavior of rotating nanobeams, which have variable 

physical properties. The Laplace transform method was used to solve constitutive equations and partial 

differential governing equations, and is an important addition to this article. The Laplace transforms 

are inverted using a numerical approach based on Fourier series expansions. According to the 

numerical results, the mechanical and thermal wave responses of the rotating nanobeam are greatly 

influenced by many parameters such as temperature change, angular velocity, nonlocality parameters, 

and thermal conductivity change. The results of this study may be useful for future research and 

accurate design of nanomachines, such as nanoparticle bearings and nanogears, etc. 

2. Theoretical preliminaries and basic equations 

2.1. The nonlocal elasticity theory 

According to the nonlocal elasticity theory of Eringen [8–10], the nonlocal stress-tensor 𝜏𝑖𝑗 can 

be expressed as 

𝜏𝑖𝑗(𝒙) = ∫ 𝐾1(|𝒙, 𝒙′|, 𝜉1)
𝑉

𝜎𝑖𝑗(𝒙′)d𝑉(𝒙′),     (1) 

where 𝜎𝑖𝑗(𝒙′) is the classical local stress tensor given by 
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𝜎𝑖𝑗(𝒙′) = 2𝜇𝜀𝑖𝑗(𝒙′) + (𝜆𝜀𝑘𝑘(𝒙′) − 𝛾𝜃(𝒙′))𝛿𝑖𝑗,     (2) 

The strain tensor 𝜀𝑖𝑗 at any two adjacent points 𝒙′ and 𝒙, is defined by 

𝜀𝑖𝑗(𝒙′) = 0.5 (
𝜕𝑢𝑖(𝒙′)

𝜕𝑥𝑗
′ +

𝜕𝑢𝑗(𝒙′)

𝜕𝑥𝑖
′ ).        (3) 

In these equations, 𝛾 =
𝛼𝑡𝐸

(1−2𝜈)
= 𝛼𝑇𝐸 , 𝜈  Poisson's ratio, 𝐸  Young’s modulus, 𝛼𝑡  linear 

thermal expansion, 𝑢𝑖  displacement components, 𝛿𝑖𝑗  is the Kronecker delta, 𝜃 = 𝑇 − 𝑇0 

temperature change, and 𝑇0  environmental temperature. The Lamé constants 𝜆  and 𝜇  can be 

written as 𝜆 = 𝐸𝜈/(1 + 𝜈)(1 − 2𝜈)  and 𝜇 = 𝐸/2(1 + 𝜈) . Also, 𝐾1(|𝒙, 𝒙′|, 𝜉1)  scalar kernel 

function, ‖𝒙 − 𝒙′‖  Euclidean distance, 𝜉1 = 𝑒0𝑎/𝑙  nonlocal scale parameter, 𝑎  internal 

characteristic length, 𝑙 external characteristic length, and 𝑒0 determined experimentally.  

When the kernel 𝐾1 is chosen as [50,51]: 

𝐾1(|𝒙, 𝒙′|, 𝜉1) =
1

2𝜋𝜉1
2𝑙2 𝐾0 (

‖𝒙−𝒙′‖

𝜉1𝑙
),       (4) 

where 𝐾0 is the modified Bessel function, Eq (1) is given by [8–10]: 

(1 − 𝜉1
2∇2)𝜏𝑖𝑗(𝒙) = 𝜎𝑖𝑗(𝒙′).        (5) 

Using Eq (4) in (1), the nonlocal constitutive is obtained as 

(1 − (𝑒0𝑎)2∇2)𝜏𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝛾𝑖𝑗𝜃.      (6) 

According to the NSGT, the total stress tensor 𝑇𝑖𝑗(𝒙) can be expressed as [17,52] 

𝑇𝑖𝑗(𝒙) = 𝜏𝑖𝑗(𝒙′) − ∇2𝜎𝑖𝑗
(1)(𝒙′),       (7) 

where 𝜎𝑖𝑗
(1)

 is the higher-order stress tensor given by [52,53] 

𝜎𝑖𝑗
(1)(𝒙′) = 𝑙𝑚

2 ∫ 𝐾2(|𝒙, 𝒙′|, 𝜉2)
𝑉

𝜎𝑖𝑗(𝒙′)d𝑉(𝒙′),     (8) 

The material length scale parameter 𝑙𝑚 was introduced to describe the importance of the higher-

order strain gradient stress field, the additional attenuation kernel 𝐾2(|𝒙, 𝒙′|, 𝜉2) was introduced to 

describe the nonlocal effect of the higher-order strain gradient field, 𝜉2 = 𝑒1𝑎/𝑙, and 𝑒1 the related 

material constant [13]. By assuming that the attenuation kernels satisfy the conditions of Eringen’s 

nonlocal elasticity, the differential counterpart of Eq (4) is written as [13,52–55]: 

(1 − 𝜉2
2∇2)(1 − 𝜉1

2∇2)𝜏𝑖𝑗 = (1 − 𝜉2
2∇2)𝜎𝑖𝑗 − 𝑙𝑚

2 (1 − 𝜉1
2∇2)∇2𝜎𝑖𝑗.  (9) 

For simplicity, assuming that 𝜉2 = 𝜉1 = 𝜉 , the first-order nonlocal strain gradient model (NSGT) 

is given by 
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(1 − 𝜉2∇2)𝜏𝑖𝑗 = (1 − 𝑙𝑚
2 ∇2)𝜎𝑖𝑗 .       (10) 

By inserting Eq (2) into (10), then we have 

(1 − (𝑒0𝑎)2∇2)𝜏𝑖𝑗 = (1 − 𝑙𝑚
2 ∇2)(𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝛾𝑖𝑗𝜃).    (11) 

When 𝑙𝑚 = 0, the constitutive equation for the nonlocal elasticity theory can be obtained. On the 

other hand, if we set 𝜉2 = (𝑒0𝑎)2 = 0, we may get the constitutive equation for strain gradient theory. 

A micro/nanoscale size influence, for example, is represented by a stiffer elastic response to 

external stresses. This has been found in the plastic deformation of metals and polymers. In terms of 

the size effect on elasticity, Lam et al. [54] discovered a rise in the bending rigidities of epoxy micro-

beams. When the beam thicknesses were reduced from 120 to 20 µm, the bending rigidities were 

roughly 2.4 times higher than expected by conventional theory. Similarly, additional studies have 

revealed an apparent rise in Young's modulus without reference to higher-order models. In the absence 

of strain gradients (for instance, in uniaxial tensile testing), Lam et al. [54] demonstrated that the elastic 

response of epoxy is independent of sample thickness, which is supported by strain gradient theories. 

2.2. The dual-phase-lag thermoelastic mode (DPL) 

The classical Fourier’s law and energy equation for a homogeneous, isotropic, thermoelastic are 

as follows: 

�⃗� = −𝐾 ∇⃗⃗⃗𝜃,            (12) 

𝜌𝐶𝐸
𝜕𝜃

𝜕𝑡
+ 𝑇0𝛾

𝜕𝑒

𝜕𝑡
= −∇⃗⃗⃗. �⃗� + 𝑄.        (13) 

Combining (1) and (2) yields the classical heat conduction equation as 

𝜌𝐶𝐸
𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
− 𝜌𝑄 = 𝐾∇2𝜃.      (14) 

Tzou [43–45] devised the dual-phase-lag (DPL) model that ignores instantaneous temperature-

energy interactions. The DPL model, in particular, makes heat transmission in thermoelastic materials 

accurate and easy. The modified Fourier law, which has been superseded by Tzou [43–45], can be 

expressed as 

(1 + 𝜏𝑞
𝜕

𝜕𝑡
) �⃗� = −𝐾 (1 + 𝜏𝜃

𝜕

𝜕𝑡
) ∇𝜃.     (15) 

The proposed new generalized dual-phase-lag thermoelastic model can be obtained by combining 

(13) and (15) as  

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) (∇ ∙ ∇(𝐾𝜃)) = (1 + 𝜏𝑞

𝜕

𝜕𝑡
+ 1

2
 𝜏𝑞

2 𝜕2

𝜕𝑡2) (𝜌𝐶𝐸
𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
− 𝜌𝑄). (16) 

In Eqs (12)–(16), �⃗� is the heat flux vector, 𝑄 is the heat source, 𝐾 is the thermal conductivity, 
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𝐶𝐸 is the specific heat, 𝜌 is the material density, 𝑒 = div �⃗⃗�, 𝜏𝑞 is the phase lag of heat flux, and 𝜏𝜃 

is the temperature gradient's phase lag. Equation (16) is simplified to the constitutive relation of the 

LS model by setting 𝜏𝜃 = 0 and omitting the influence of the term 𝜏𝑞
2. Equation (7) can be reduced 

to the classical Fourier law when 𝜏𝑞 = 𝜏𝜃 = 0. 

3. Problem formulation 

As shown in Figure 1, a nanobeam with length  𝐿 , width 𝑏  and thickness ℎ , internal cross-

sectional area 𝐴, and bending stiffness 𝐸𝐼 are the components of the system under discussion. Under 

the Euler-Bernoulli principle, every plane cross-section is perpendicular to the nanobeam pivot in the 

beginning and perpendicular to the unbiased surface. The displacements are given by [53] 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
,   𝑣 = 0,    𝑤 = 𝑤(𝑥, 𝑡),      (17) 

where 𝑤 is the deflection. 

 

Figure 1. Schematic chart for the rotating nanobeam. 

Equation (17) can be used to simplify Eq (9) as  

(1 − 𝜉2 𝜕2

𝜕𝑥2) 𝜎𝑥 = −𝐸 (1 − 𝑙𝑚
2 𝜕2

𝜕𝑥2) (𝑧
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇𝜃),    (18) 

where 𝜎𝑥 is the nonlocal axial stress, 𝛼𝑇 = 𝛼𝑡/(1 − 2𝜈) and 𝜉 = (𝑒0𝑎)2.  

The bending moment 𝑀(𝑥, 𝑡) is given by: 

𝑀(𝑥, 𝑡) = ∫ 𝑧𝜎𝑥d𝑧
ℎ/2

−ℎ/2
.         (19) 

Substituting Eq (18) into Eq (19), we get  

(1 − 𝜉2 𝜕2

𝜕𝑥2
) 𝑀 = −𝐸𝐼 (1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2
) (

𝜕2𝑤

𝜕𝑥2
+ 𝛼𝑇𝑀𝑇),  (20) 

where 𝐼 = 𝑏ℎ3/12 and  
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𝑀𝑇 =
12

ℎ3 ∫ 𝜃(𝑥, 𝑧, 𝑡)𝑧d𝑧
ℎ/2

−ℎ/2
.       (21) 

The transverse motion equation can be written as [51] 

𝜕2𝑀

𝜕𝑥2 = 𝜌𝑏ℎ
𝜕2𝑤

𝜕𝑡2 .         (22) 

We suppose that the nanobeam rotates about an axis parallel to the 𝑧-axis with an angular velocity 

Ω centered at a small distance 𝑟 from the first edge of the nanobeam. The centrifugal tensional force 

𝑅(𝑥) is introduced because of rotation. In this case, the equation of transverse motion (22) can be 

written as [27,28] 

𝜕2𝑀

𝜕𝑥2 +
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤

𝜕𝑥
) = 𝜌𝑏ℎ

𝜕2𝑤

𝜕𝑡2 .      (23) 

The axial force 𝑅(𝑥) due to centrifugal stiffening at a distance 𝑥 from the origin (Figure 1) is 

given by [27,28,39] 

𝑅(𝑥) = ∫ 𝜌𝐴Ω2(𝑟 + 𝑥)𝑑𝑥
𝐿

𝑥
.       (24) 

After integration, Eq (24) can be simplified as 

𝑅(𝑥)  =
𝜌𝐴Ω2

2
[(𝐿 + 𝑟)2 − (𝐿 + 𝑥)2]

=
𝜌𝐴Ω2

2
[(𝑟 − 𝑥)(2𝐿 + 𝑟 + 𝑥)].

     (25) 

By inserting (25) into Eqs (20) and (23), we can obtain 

𝑀(𝑥, 𝑡) = 𝜉2 (𝜌𝐴
𝜕2𝑤

𝜕𝑡2 −
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤

𝜕𝑥
)) − 𝐸𝐼 (1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2) (
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇𝑀𝑇),  (26) 

[𝐼𝐸 (𝑙𝑚
2 𝜕2

𝜕𝑥2 − 1)
𝜕4

𝜕𝑥4 − 𝜌𝐴
𝜕2

𝜕𝑡2 (1 − 𝜉2 𝜕2

𝜕𝑥2)] 𝑤 + (1 − 𝜉2 𝜕2

𝜕𝑥2) [
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤

𝜕𝑥
)]

−𝐸𝐼𝛼𝑇 (1 − 𝑙𝑚
2 𝜕2

𝜕𝑥2
)

𝜕2𝑀𝑇

𝜕𝑥2
= 0.

  (27) 

The modified heat conduction Eq (16) can be written as (𝑄 = 0) 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) ∇. (𝐾∇𝜃) = (1 + 𝜏𝑞

𝜕

𝜕𝑡
+

𝜏𝑞
2

2

𝜕2

𝜕𝑡2)
𝜕

𝜕𝑡
(𝜌𝐶𝐸𝜃 − 𝛾𝑇0𝑧

𝜕2𝑤

𝜕𝑥2 ).  (28) 

4. Thermal properties of materials 

The conductivity 𝐾 is considered a linear function of the temperature variation as [23,39,40] 

𝐾 = 𝐾(𝜃) = 𝐾0(1 + 𝐾1𝜃),       (29) 

where 𝐾0 denotes the thermal conductivity at temperature 𝑇0 and 𝐾1 is the temperature-dependent 

thermal conductivity fluctuation.  
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By substituting Eq (29) into (28), we obtain 

𝐾0 (1 + 𝜏𝜃
𝜕

𝜕𝑡
) ∇. ((1 + 𝐾1𝜃)∇𝜃) = (1 + 𝜏𝑞

𝜕

𝜕𝑡
+

𝜏𝑞
2

2

𝜕2

𝜕𝑡2)
𝜕

𝜕𝑡
(𝜌𝐶𝐸𝜃 − 𝛾𝑇0𝑧

𝜕2𝑤

𝜕𝑥2 ). (30) 

To linearize the governing equation (30), we define a variable 𝜓 as follows [39,40] 

𝜓 = ∫
𝐾(𝜃)

𝐾0
d𝜃

𝜃

0
          (31) 

After inserting Eq (29) into Eq (31) and integrating, we have 

𝜓 = 𝜃(1 + 1

2
 𝐾1𝜃)        (32) 

By differentiating the relationship (31) times in terms of distances and once in terms of time, we 

get 

∇𝜓 =
𝐾(𝜃)

𝐾0
∇𝜃,

𝜕𝜓

𝜕𝑡
=

𝐾(𝜃)

𝐾0

𝜕𝜃

𝜕𝑡
.
         (33) 

Then, the heat conduction equation can be expressed as 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) (

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2) 𝜓 = (1 + 𝜏𝑞
𝜕

𝜕𝑡
+ 1

2
 𝜏𝑞

2 𝜕2

𝜕𝑡2)
𝜕

𝜕𝑡
(

𝜌𝐶𝐸

𝐾
𝜓 −

𝛾𝑇0

𝐾
𝑧

𝜕2𝑤

𝜕𝑥2 ),  (34) 

5. Sinusoidal solution 

To solve the problem, we take the temperature change solution as a sinusoidal function as 

{𝜓, 𝜃}(𝑥, 𝑧, 𝑡) = {Ψ, Θ}(𝑥, 𝑡) sin (
𝜋

ℎ
𝑧)       (35) 

Presenting Eq (35) in Eqs (26), (27) and (34) leads to 

[𝐼𝐸 (𝑙𝑚
2 𝜕2

𝜕𝑥2 − 1)
𝜕4

𝜕𝑥4 − 𝜌𝐴
𝜕2

𝜕𝑡2 (1 − 𝜉2 𝜕2

𝜕𝑥2)] 𝑤 + (1 − 𝜉2 𝜕2

𝜕𝑥2) [
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤

𝜕𝑥
)]

−
24𝐸𝐼𝛼𝑇

𝜋2ℎ
(1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2
)

𝜕2Ψ

𝜕𝑥2
= 0,

  (36) 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) (

𝜕2

𝜕𝑥2 −
𝜋2

ℎ2) Ψ = (1 + 𝜏𝑞
𝜕

𝜕𝑡
+ 1

2
 𝜏𝑞

2 𝜕2

𝜕𝑡2)
𝜕

𝜕𝑡
(

𝜌𝐶𝐸

𝐾
Ψ −

𝛾𝑇0𝜋2ℎ

24𝐾

𝜕2𝑤

𝜕𝑥2 ),  (37) 

𝑀(𝑥, 𝑡) = 𝜉2 (𝜌𝐴
𝜕2𝑤

𝜕𝑡2 −
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤

𝜕𝑥
)) − 𝐸𝐼 (1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2) (
𝜕2𝑤

𝜕𝑥2 +
24𝛼𝑇

𝜋2ℎ
Θ).  (38) 

The following non-dimensional variables are provided for convenience 
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{𝑢′, 𝑥′, 𝐿′, 𝑤′, 𝑧′, ℎ′, 𝑏′, 𝑙𝑚
′ , 𝜉′} = 𝜂𝑐{𝑢, 𝑥, 𝐿, 𝑤, 𝑧, ℎ, 𝑏, 𝑙𝑚, 𝜉}, {Θ′, Ψ′} =

1

𝑇0
{Θ, Ψ},

   {𝑡′, 𝜏𝑞
′ , 𝜏𝜃

′ } = 𝜂𝑐2{𝑡, 𝜏𝑞 , 𝜏𝜃},     𝑀′ =
1

𝜂𝑐𝐸𝐼
𝑀,   𝑐2 =

𝐸

𝜌
, 𝜂 =

𝜌𝐶𝐸

𝐾
.

  (39) 

We can get the following after introducing dimensionless quantities (39) into the Eqs (36)–(38) 

(primes are omitted) 

[(𝑙𝑚
2 𝜕2

𝜕𝑥2 − 1)
𝜕4

𝜕𝑥4 −
12

ℎ2

𝜕2

𝜕𝑡2 (1 − 𝜉2 𝜕2

𝜕𝑥2)] 𝑤 + (1 − 𝜉2 𝜕2

𝜕𝑥2) [
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤

𝜕𝑥
)]

−
24𝑇0𝛼𝑇

𝜋2ℎ
(1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2)
𝜕2Ψ

𝜕𝑥2 = 0,
  (40) 

(1 + 𝜏𝜃
𝜕

𝜕𝑡
) (

𝜕2

𝜕𝑥2 −
𝜋2

ℎ2) Ψ = (1 + 𝜏𝑞
𝜕

𝜕𝑡
+ 1

2
 𝜏𝑞

2 𝜕2

𝜕𝑡2)
𝜕

𝜕𝑡
(Ψ −

𝛾𝜋2ℎ

24𝐾0𝜂

𝜕2𝑤

𝜕𝑥2 ),  (41) 

𝑀(𝑥, 𝑡) =
12𝜉

ℎ2

𝜕2𝑤

𝜕𝑡2 − 𝜉2 [
𝜕

𝜕𝑥
(𝑅(𝑥)

𝜕𝑤

𝜕𝑥
)] − (1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2) (
𝜕2𝑤

𝜕𝑥2 +
24𝑇0𝛼𝑇

𝜋2ℎ
Θ).  (42) 

The maximum axial force 𝑅(𝑥) due to centrifugal stiffening at the root (𝑥 = 0) is given by [38,39] 

𝑅𝑚𝑎𝑥  = ∫ 𝜌𝐴Ω2(𝑟 + 𝑥)𝑑𝑥 =
1

2
𝜌𝐴Ω2𝐿(2𝑟 + 𝐿)

𝐿

0
    (43) 

The motion Eq (40) can therefore be described as  

[(𝑙𝑚
2 𝜕2

𝜕𝑥2 − 1)
𝜕4

𝜕𝑥4 −
12

ℎ2

𝜕2

𝜕𝑡2 (1 − 𝜉2 𝜕2

𝜕𝑥2)] 𝑤 + 𝑞 +
6𝐿Ω2(2𝑟+𝐿)

ℎ2 (1 − 𝜉2 𝜕2

𝜕𝑥2)
𝜕2𝑤

𝜕𝑥2

−
24𝑇0𝛼𝑇

𝜋2ℎ
(1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2)
𝜕2Ψ

𝜕𝑥2 = 0.
  (44) 

The bending moment 𝑀(𝑥, 𝑡) in Eq (42) can also be expressed as  

𝑀(𝑥, 𝑡) =
12𝜉2

ℎ2

𝜕2𝑤

𝜕𝑡2
− 𝜉2 [𝑞 +

6𝐿Ω2(2𝑟+𝐿)

ℎ2

𝜕2𝑤

𝜕𝑥2
] − (1 − 𝑙𝑚

2 𝜕2

𝜕𝑥2
) (

𝜕2𝑤

𝜕𝑥2
+

24𝑇0𝛼𝑇

𝜋2ℎ
Θ)  (45) 

6. Laplace transform strategy 

Using the Laplace technique under the initial conditions 

Ψ(𝑥, 0) = 0 =
𝜕Ψ(𝑥,0)

𝜕𝑡
,

𝑤(𝑥, 0) = 0 =
𝜕𝑤(𝑥,0)

𝜕𝑡
.
         (46) 

Then, Eqs (41), (44) and (45) are converted as  

[
d6

d𝑥4
− 𝐴7

d4

d𝑥4
+ 𝐴8

d2

d𝑥2
− 𝐴9] �̅� = 𝐴10 (1 − 𝑙𝑚

2 d2

d𝑥2
)

d2Ψ̅

d𝑥2
,

𝐴5
d2�̅�

d𝑥2 = − (
d2

d𝑥2 − 𝐴6) Ψ̅,
     (47) 

𝑀(𝑥, 𝑡) = 𝑙𝑚
2 (

d4

d𝑥4
−𝐴7

d2

d𝑥2
+ 𝐴9𝜉) �̅� − 𝐴2 (1 − 𝑙𝑚

2 d2

d𝑥2
) Θ̅,   (48) 
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where 

𝐴1 =
6𝐿𝛺2(2𝑟+𝐿)

ℎ2 , 𝐴2 =
24𝑇0𝛼𝑇

𝜋2ℎ
, 𝐴3 =

𝛾𝜋2ℎ

24𝐾𝜂
, 𝐴4 =

𝑠(1+𝜏𝑞𝑠+𝑠2𝜏𝑞
2/2)

(1+𝜏𝜃𝑠)
,

𝐴5 = 𝐴3𝐴4, 𝐴6 =
𝜋2

ℎ2 + 𝐴4, 𝐴0 =
12𝑠2

ℎ2 , 𝐴7 =
1+𝐴1𝜉2

𝑙𝑚
2 ,

𝐴8 =
𝐴1+𝐴0𝜉2

𝑙𝑚
2 , 𝐴9 =

𝐴0

𝑙𝑚
2 ,   𝐴10 =

𝐴2

𝑙𝑚
2 .

 (49) 

We obtain from Eqs (47) and (48) the following 

[
d8

d𝑥8
− 𝐴

d6

d𝑥6
+ 𝐵

d4

d𝑥4
− 𝐶

d2

d𝑥2
+ 𝐹] �̅� = 0,     (50) 

where 

𝐴 = 𝐴7 + 𝐴6, 𝐵 = 𝐴8 + 𝐴7𝐴6 − 𝑙𝑚
2 𝐴5𝐴10, 𝐶 = 𝐴9 + 𝐴8𝐴6 − 𝐴5𝐴10, 𝐹 = 𝐴9𝐴6 (51) 

Equation (50) has a general solution that can be written as 

�̅�(𝑥, 𝑠) = ∑ (𝐶𝑗e−𝑚𝑗𝑥 + 𝐶𝑗+3e𝑚𝑗𝑥),4
𝑗=1      (52) 

where the parameters 𝐶𝑗 , (𝑗 = 1,2. . ,8) are the integrated parameters. Also, the parameters 𝑚1
2, 𝑚2

2, 

𝑚3
2 and 𝑚4

2 satisfy the equation  

𝑚8 − 𝐴𝑚6 + 𝐵𝑚4 − 𝐶𝑚2 + 𝐹 = 0.     (53) 

With the help of Eqs (48) and (52), we have 

Ψ̅(𝑥, 𝑠) = ∑ 𝐻𝑗(𝐶𝑗e−𝑚𝑗𝑥 + 𝐶𝑗+3e𝑚𝑗𝑥)4
𝑗=1 ,     (54) 

where 𝐻𝑗 = −
𝐴5𝑚𝑗

2

𝑚𝑗
2−𝐴6

. 

The axial displacement �̅� is given by  

�̅� = −𝑧
d�̅�

d𝑥
= 𝑧 ∑ 𝑚𝑗(𝐶𝑗e−𝑚𝑗𝑥 − 𝐶𝑗+3e𝑚𝑗𝑥)4

𝑗=1 .      (55) 

After using the Laplace transform to Eq (35), the temperature �̅� may be calculated as 

�̅�(𝑥, 𝑠) = sin (
𝜋

ℎ
𝑧) [

−1+√1+2𝐾1�̅�

𝐾1
].       (56) 

The bending moment �̅� can be obtained from (48) after using the solutions (52) and (54).  

7. Application 

We assume that the nanobeam fulfills the following boundary conditions: 

i) Mechanical boundary conditions [55] 

𝑤(𝑥, 𝑡)|𝑥=0,𝐿 = 0,    
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 |
𝑥=0,𝐿

= 0,    
𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 |
𝑥=0,𝐿

= 0.   (57) 
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ii) Thermal boundary conditions: 

Θ(𝑥, 𝑡)|𝑥=0 =
𝐿0𝑡𝑒(−𝑡/𝑡𝑝)

𝑡𝑝
2 = 𝐿(𝑡),      (58) 

𝜕Θ(𝑥,𝑡)

𝜕𝑥
|

𝑥=𝐿
= 0          (59) 

In Eq (58), 𝑡𝑝 is the time length of a laser pulse and 𝐿0 the laser intensity. Introducing Eqs (32) 

and (33) into Eqs (58) and (59), we get 

Ψ(0, 𝑡) = 𝐿(𝑡) + 1

2
 𝐾1[𝐿(𝑡)]2,        (60) 

𝜕Ψ(𝐿,𝑡)

𝜕𝑥
= 0.           (61) 

In the Laplace transform domain, the boundary conditions (57)–(61) can be written as 

�̅�(𝑥, 𝑠)|𝑥=0,𝐿 = 0,   
d2�̅�(𝑥,𝑠)

d𝑥2 |
𝑥=0,𝐿

,
d4�̅�(𝑥,𝑠)

d𝑥4 |
𝑥=0,𝐿

= 0,   (62) 

Ψ̅(𝑥, 𝑠)|𝑥=0 =
𝐿0

(1+𝑠𝑡𝑝)2 +
𝐾1𝐿0

2  

𝑡𝑝(2+𝑠𝑡𝑝)3 = �̅�(𝑠),     (63) 

dΨ̅

d𝑥
|

𝑥=𝐿
= 0.           (64) 

When the previously mentioned conditions are applied, then we have 

∑ (𝐶𝑗 + 𝐶𝑗+3) = 04
𝑗=1 ,         (65) 

∑ (𝐶𝑗e−𝑚𝑗𝐿 + 𝐶𝑗+3e𝑚𝑗𝐿) = 04
𝑗=1 ,       (66) 

∑ 𝑚𝑗
2(𝐶𝑗 + 𝐶𝑗+3) = 04

𝑗=1 ,         (67) 

∑ 𝑚𝑗
2(𝐶𝑗𝑒−𝑚𝑗𝐿 + 𝐶𝑗+3𝑒𝑚𝑗𝐿) = 04

𝑗=1 ,      (68) 

∑ 𝑚𝑗
4(𝐶𝑗 + 𝐶𝑗+3) = 0,4

𝑗=1          (69) 

∑ 𝑚𝑗
4(𝐶𝑗𝑒−𝑚𝑗𝐿 + 𝐶𝑗+3𝑒𝑚𝑗𝐿) = 0,4

𝑗=1       (70) 

∑ 𝐻𝑗(𝐶𝑗 + 𝐶𝑗+3)4
𝑗=1 = �̅�(𝑠),        (71) 

∑ 𝑚𝑗𝐻𝑗(𝐶𝑗𝑒−𝑚𝑗𝐿 − 𝐶𝑗+3𝑒𝑚𝑗𝐿)4
𝑗=1 = 0.      (72) 
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By solving the aforementioned system equations, the unknown parameters 𝐶𝑗 , (𝑗 = 1,2. . ,8) may 

be computed.  

8. Laplace transform inversion 

The Fourier series expansion, as well as the Honig and Hirdes technique [56], will be briefly 

introduced in this paper. In this method, all functions �̅�(𝑥, 𝑠) in the Laplace field can be converted to 

the time field �̅�(𝑥, 𝑠) by using the following relation: 

𝑔(𝑥, 𝑡) =
2𝑒𝑐𝑡

𝑡1
{1

2
 Re[�̅�(𝑥, 𝑐)] + Re [∑ �̅� (𝑥, 𝑐 +

i𝑛𝜋

𝑡1
) cos (

𝑛𝜋𝑡

𝑡1
)𝑁

𝑛=1 ] },   (73) 

where the parameter 𝑡1 denotes the time interval and Re stands for the real part of the complex 

function. By summing a specific number of 𝑁, Equation (80) can now be calculated numerically. As 

a result, 𝑐 and 𝑁 must be adjusted to improve accuracy [57,58]. 

9. Results and discussion 

In this work, numerical results are provided by focusing on physical parameters and constants in 

SI units, which are used in formulating the physical variables under study, and by using silicon as a 

material. The following physical values are used [39]: 

𝐸 = 169 GPa, 𝑡𝑝 = 2 ps, 𝜌 = 2330
kg

m3 , 𝐿0 = 1 × 1011 J

m2    𝐶𝐸 = 713
J

kg K
, 𝐾 = 156

W

mK
,

𝐿/ℎ = 5 , 𝑏/ℎ = 0.5, 𝐿 = 1, 𝑧 = ℎ/3, 𝛼𝑇 = 2.59 × 10−9 1

K
,   𝜈 = 0.22, 𝑇0 = 293 𝐾, 𝑡 = 0.1.

  

We divided graphical representations of several properties, such as size-dependent effects (𝜉 and 

𝑙𝑚 ), parameter change of thermal conductivity 𝐾1 , and rotation Ω  on the investigated thermal-

physical fields, into three groups in order to analyze their effects.  

The current work was prompted by a strong fit between the conclusions of nonlocal strain gradient 

theory and evidence from experimental research and molecular dynamics simulations. The 

investigation of wave propagation in the classical theory was established using the NSG theory and 

the DPL heat transfer theory, and the calculation results were compared with the theoretical and 

experimental results [59,60]. The nonlocal strain gradient elasticity model, unlike the conventional 

model, can demonstrate good agreement with experimental results. 

9.1. Effect of nonlocal and material length scale coefficients 

Nonlocal gradient theory (NSGT) has been used to capture the size-dependent effect of the 

nanobeam, as well as other specific cases such as classical theory (CET), nonlocal theory (NET), and 

strain regression theory (SGT). A stress-gradient parameter 𝜉 is also included to account for the stress 

gradient effect, as well as a strain-gradient parameter 𝑙𝑚 to account for the strain gradient effect. If 

𝑙𝑚 = 0, the introduced nonlocal gradient theory (NSGT) model may be reduced to a nonlocal elastic 

model (NET), and if 𝜉 = 0, to a strain gradient model (SGT). 

Figures 2–5 show the dimensionless studied fields for various nonlocal parameter (𝜉) and material 

length scale parameter (𝑙𝑚) values. For the purposes of computing, the values 𝐾1 = −0.3, Ω = 0.3, 
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𝜏𝑞 = 0.02  and 𝜏𝜃 = 0.01  are taken. The NSGT incorporates the impacts of both nonlocal and 

material length scale factors, allowing for a better understanding of the implications of these two 

parameters on the dynamic responses of the nanobeam. From the numerical results and figures, the 

following can be noted: 

• It is clear that the non-local parameter and the stress gradient modulus have a great influence on 

the interactions within the nanobeam.  

• The dimensionless values of deflection 𝑤  and displacement 𝑢  grow in proportion to the 

nonlocal parameter values. From Figures 2 and 4, it is apparent that the magnitudes of NSGT, SGT 

and NET models for deflections 𝑤  and displacement 𝑢  have greater values than those achieved 

using conventional continuum theory (CET).  

• When the parameter 𝑙𝑚 > 𝜉, the NSGT model yields lower results than the nonlocal elastic 

model (NET). These facts suggest the nanobeam has a stiffness-reduction impact when the length scale 

parameter is lower than the non-local parameter, and when the parameter of the material length scale 

is higher than the non-local parameter, the nanobeam exerts a stiffness-reduction effect. Thus, it can 

be said that the non-local parameter has the effect of stiffness-softening while the gradient modulus 

has the effect of stiffness-hardening. Similar results were also found in several papers, such as in [60–62] 

on the dynamic response of beam-type structures based on NSGT. 

• From the figures, it is clear that the difference between the NSGT and SGT models is less 

pronounced at lower non-local parameter values but becomes more pronounced at larger non-local 

parameter values. This pattern applies to both the CET and the NET. Indeed, regarding the reduction 

of the results due to the raising of the non-local parameter values, one can mention that the strain 

increases while stress is reduced in Eringen's differential formulation. This phenomenon causes a 

softening of the effect. Thus, an increase in the non-local parameter decreases the aberrations within 

the nanobeam. Compared with the published results, the collected results show good agreement, for 

example, with those of Jena et al. [22] and Zeng et al. [23]. 

• Also, when the parameter 𝑙𝑚 is smaller than the parameter 𝜉; the nonlocal effect predominates, 

which leads to a stiffness-softening effect of the nanobeam. When the parameter 𝜉 is greater than the 

parameter 𝑙𝑚, the effect of the stress gradient takes precedence, causing the nanobeam to stiffen. 

Figure 2 shows that the deflection 𝑤 starts and terminates at zero values and fulfills the boundary 

conditions at 𝑥 = 0  and 𝑥 = 𝐿 . It is further shown that the aberrations recorded by the Euler-

Bernoulli beam theory are usually slower than those predicted by non-local beam theories, indicating 

that the nanobeam is attenuated and softened when the size-dependent is taken into account. 

• From Figure 3, we notice that the parameters 𝜉 and 𝑙𝑚 have a very weak influence on the 

distribution of temperature change 𝜃 . Thermal waves are continuous and smooth phenomena that 

reach a steady state depending on the phase lag factors, which means that heat transfers easily from 

one particle to another, causing the temperature to drop even more. This phenomenon is in contrast to 

the traditional theory of thermal elasticity, which predicts that the rate of propagation of thermal 

perturbation is infinite. 

• Increases in temperature and thermal load cause a drop in beam stiffness, which reduces thermal 

and mechanical waves. 

• As seen in Figure 4 it is evident that the magnitude of the displacement 𝑢 in the NSGT, SGT 

and NET models is less than that obtained using standard contact theory (CET). 

• In contrast to the behavior shown in Figures 2 and 3, the bending moment 𝑀 behavior as shown 

in Figures 5. It is clear that the sizes of the NSGT, SGT, and NET models of the bending moment 𝑀 
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have lower values than those achieved using the conventional contact theory (CET). In other words, 

the bending moment decreases with the height of the nonlocal modulus. 

 

Figure 2. The deflection 𝑤 via local and nonlocal models. 

 

Figure 3. The temperature 𝜃 via local and nonlocal models. 
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Figure 4. The displacement 𝑢 via local and nonlocal models. 

 

Figure 5. The bending moment 𝑀 via local and nonlocal models. 

• Finally, the classical theory, which does not take into account the size dependence and can yield 

results suitable for studying narrow beams, is well known. However, in non-local models, the effect of 

size-dependent mechanical behavior becomes significant and cannot be ignored. From theoretical 

calculations, we may conclude that the nanobeam can display either a hardening softening or a 

hardening-stiffness effect, depending on the relative amplitude of the non-local factor and the length-

scale factor of the material. 

• This may explain why the stiffness-hardening effect of nanobeams is frequently found in 

experimental studies as in [61], but the stiffness-softening effect of nanostructures is more common as 

discussed in [62]. 
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9.2. The effect of the variability of thermal conductivity  

Thermal conductivity is an important property of a material that is often taken for granted. On the 

other hand, many experimental and theoretical investigations have shown that thermal conductivity is 

closely related to temperature change [63,64]. Depending on the general one-dimensional 

thermoplastics problem, Xiong and Guo [65] emphasized the effect of changing temperature-

dependent properties on field variables. As described earlier, the thermal conductivity 𝐾 is assumed 

to be a linear function of the temperature change (see Eq (25)). A material with a high 𝐾 is considered 

an excellent conductor of heat, while a material with a low 𝐾 is considered a good thermal insulator. 

As a result, this parameter has a significant impact on both the working conditions in deep mines and 

the ability of subterranean vents to store thermal energy. It is also related to geothermal energy 

generation and radioactive waste disposal. 

In this subsection, the effect of the variability parameter of thermal conductivity 𝐾1 on the non-

dimensional deflection, temperature spread, displacement, and bending moment is investigated. When 

the coefficient of thermal conductivity is dependent on heat, there will be two separate examples to 

study the change of thermal conductivity. The values 𝐾1 = −1 and 𝐾1 = −0.5 are used when the 

thermal conductivity is dependent on the temperature change. The value 𝐾1 = 0.0 is utilized if the 

thermal conductivity is constant. The non-dimensional values 𝜉 = 0.01, 𝑙𝑚 = 0.01, Ω = 0.3, 𝜏𝑞 =

0.02 and 𝜏𝜃 = 0.01 are taken. The numerical results of the studied field variables are depicted in 

Figures 6–9. 

As can be seen from Figure 6, the magnitudes of 𝑤 decrease as the parameter 𝐾1 increases. As 

illustrated in Figure 7, as the distance 𝑥 increases, the temperature drops, driving wave propagation. 

The temperature distribution is increased when the parameter 𝐾1 is reduced. Physically, increasing 

the parameter 𝐾1 improves the heat transfer process and raises the local temperature of the beam. It 

is also noted that with an increase in the parameter 𝐾1 , the temperature rises. The results were 

compared with those presented in [66] and it was found that there was agreement in the results.  

 

Figure 6. The deflection 𝑤 versus 𝑥 for different values of the parameter 𝐾1. 
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Figure 7. Temperature 𝜃 versus 𝑥 for different values of the parameter 𝐾1. 

Figure 8 shows that the displacement 𝑢  increases when 0.0 ≤ 𝑥 ≤ 0.1  for the greatest 

amplification and drops when 0.1 ≤ 𝑥 ≤ 0.6. In the last range 0.6 ≤ 𝑥 ≤ 1 of wave propagation, the 

displacement 𝑢 is traveling straight. The variability parameter 𝐾1 has a significant impact on the 

displacement. In Figure 9, the increase in the parameter 𝐾1 is designed to enhance the distribution of 

the bending moment 𝑀. 

The results demonstrate that the change in thermal conductivity has an effect that should not be 

ignored [67]. The mechanical and thermal distributions of the nanobeam reveal that the wave 

propagates as a velocity-limited wave in the medium and depends on the coefficient of change of 

thermal conductivity 𝐾1 [34]. We may deduce from the analysis that the thermoelastic behavior is 

affected by variations in thermal material characteristics, and these impacts are mostly focused on the 

distribution's peak values. 

 

Figure 8. Displacement 𝑢 versus 𝑥 for different values of the parameter 𝐾1. 
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Figure 9. Bending moment 𝑀 versus 𝑥 for different values of the parameter 𝐾1. 

9.3. Effects of the rotation speed 

As mentioned earlier, spinning nanobeams play an important role in many nano-devices, and 

properly modeling and studying them is a very challenging task. In this section, a study was conducted 

to investigate the effect of rotational speed Ω  on the functions of the physical fields. Numerical 

calculations were performed when the values of the other effective parameters were constant. This 

work will use non-local gradient theory (NSGT) to elucidate the vibrational behavior of nanobeams 

for size-dependent beams, as there has been no precise inquiry into the nanobeams' rotation. It is found 

that the speed of rotation, elastic media, and non-local scaling factors greatly influence the bending 

vibration of the system. 

Figures 10, 11, 12, and 13 show the variance of the investigated fields for three distinct angular 

velocity values (Ω = 0, 0.1, 0.3). The rotation coefficient is zero (Ω = 0) in the absence of rotation, 

which is a special case of the current work. Figure 10 depicts the rotation Ω that affects the deflection 

𝑤. In the presence and absence of rotation (centrifugal force), this parameter was shown to have a 

significant impact on the deflection 𝑤  and variance in results. It is noticeable that increasing the 

angular velocity Ω reduces the deflection 𝑤 of the non-local transverse nanobeam. These findings 

and behavior are similar to those seen in [68,69]. In Figure 11, the effect of angular velocity on 

temperature change 𝜃 is examined and displayed. We note from the figure that the effect of rotation 

on the temperature change is very slight. The results of the preceding literature are compatible with 

those of the author, such as the equivalent results achieved in [37–39]. 

The effect of the angular velocity of rotation Ω on the variance of the displacement 𝑢 is shown 

in Figure 12. It is found that the speed of rotation Ω most prominently affects the curves reflecting 

the displacement field. The figure also displays that the displacement distribution 𝑢  decreases in 

certain periods with increasing rotation and rises in other periods along the axis of the beam. Figure 

13 shows the changes in bending moment 𝑀 for different values of rotational velocity Ω. The graph 

indicates that rotation greatly affects the moment curves and that as the angular velocity Ω values 

decrease, the bending moment amplitude 𝑀 increases. Ultimately, the amplitude of the studied fields 

changes as the non-dimensional angular velocity increases. In other words, the speed of rotation Ω is 

most prominently responsible for the stiffening effect of the centrifugal force. The functional features 
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of rotating structures with diverging effects of external stimulation can be improved based on 

understanding the influence of rotational speed in hybrid nano-generators to achieve better shaft 

motion. 

 

Figure 10. The deflection 𝑤 with different rotational speed Ω. 

 

Figure 11. The temperature 𝜃 with different rotational speed Ω. 

 

Figure 12. The displacement 𝑢 with different rotational speed Ω. 
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Figure 13. The bending moment 𝑀 with different rotational speed Ω. 

10. Conclusions 

In the current work, a nonlocal strain gradient beam model is constructed to examine the vibration 

response of the thermoelastic nanobeam, including its rotational effect. The Euler–Bernoulli beam 

theory coupled with the generalized thermoelastic model with phase delays and nonlocal strain-

gradient theory, is used to construct the governing equations for the rotating nanobeam. It was taken 

into consideration that the thermal conductivity coefficient and the specific heat of the nanobeam are 

temperature dependent. The effect of nonlocal, material length scale parameters, rotation, and thermal 

conductivity variability on thermal and mechanical wave scattering is investigated. The following 

important outcomes are achieved: 

• The non-local gradient elasticity model showed results that were different from the results of 

the traditional model, and this is in agreement with the previous literature. 

• Deflections and displacement are reduced as the non-local parameters increase. The strain 

gradient effect is a priority when the non-local parameter is greater than the length scale parameter of 

the material, which results in the annealing of the nanobeam. 

• The difference between NSGT and SGT is less pronounced at lower non-local parameter values, 

but becomes more pronounced at larger non-local parameter values. This pattern applies to both the 

CET and the NET. 

• The behavior of different fields is affected by changes in the thermal properties of materials, and 

these effects appear mostly in the peak values of the distributions. 

• Depending on the relative amplitude of the nonlocal factor and the material length-scale 

parameter, the nanobeam may show the effect of stiffness-softening or stiffness-hardening. 

• The fluctuation of thermal conductivity and its dependence on temperature change have a 

significant impact on different physical fields. 

• The angular velocity of rotation is most prominently responsible for the strengthening effect of 

the centrifugal force. 

• The effect of rotation on the temperature change is very slight. The fundamental effect of rotation 

on the behavior of different physical distributions can also be inferred from the obtained results and 

should be taken into account in production and design procedures. 



6148 

AIMS Mathematics Volume 7, Issue 4, 6128–6152. 

• Temperature-dependent and size-dependent structures may both be found in nanoscale materials. 

This indicates that external temperature has a significant impact on nonlocality behavior. The rotating 

nanobeam can also respond as a temperature-dependent structure. 

• Our findings reveal that the dependent size impact on the thermoelastic vibration of nanobeams 

could be significant, emphasizing the relevance of dependent size effects in nanoscale device and 

system design. 
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